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A B S T R A C T

Plant species differ greatly in their ability to acclimatise to and survive, cold stress. Normally, potato tubers are
stored at low temperatures (below 10 °C) to delay sprouting. In this research, combined transcriptomic and
proteomic analysis was conducted on potato tubers stored at 15 °C, 4 °C and 0 °C to investigate the mechanism of
cold responses during postharvest storage. Results showed that soluble sugars were accumulated under low
temperatures, regulating by granule-bound starch synthase 1, beta-amylase, invertase inhibitor and fructokinase.
In addition, fifteen heat shock proteins (Hsps), including three Hsp70s, two Hsp80s, one Hsp90, one Hsp100 and
eight small Hsps, were induced by low temperatures, which may act individually or synergistically to prevent
physiological or cellular damage from cold stress in postharvest potato tubers. This research provided general
information of sugar accumulation and defense response in potato tuber under cold storage.

1. Introduction

Cold stress from low temperatures limits yield and quality of crops
and horticultural products during growth, and also limits the post-
harvest storage of fruits and vegetables (Liu, Yang, Zhu, & Wang, 2016;
Wang et al., 2017; Zhang et al., 2016). A series of physiological
changes, including electrolyte leakage, photosynthetic capacity and
respiration rates, have been observed when cold-sensitive crops and
fruits are exposed to low temperatures (Khan et al., 2019; Mustárdy,
Vu, & Faludi-Dániel, 1982).

Harvested potato tubers exhibit various physiological and bio-
chemical responses when stored at low temperature to inhibit sprouting
and decay (Bagnaresi et al., 2008; Folgado et al., 2014). Sugars accu-
mulate rapidly in potato tubers under low temperature storage, less
than 10 °C (Hou et al., 2017; Lin et al., 2017; Xiao et al., 2018). It has
also been reported that cold storage increases the total phenolics con-
tent and antioxidant activity of selected potato clones (Külen,
Stushnoff, & Holm, 2013). Stress tolerance is acquired from cold stress
to prevent cellular damage and re-build cellular homeostasis in plant.

Heat shock proteins (Hsps) are key components contributing to cellular
homeostasis in cells under cold stress, which are responsible for protein
folding, assembly, translocation and degradation in abroad array of
normal cellular processes (Wang, Vinocur, Shoseyov, & Altman, 2004).
However, the molecular mechanism of potato tubers in response to cold
stress during postharvest storage remains unclear.

Recent advances in high-throughput technologies enable quantita-
tive monitoring of the abundance of various biological molecules and
allow determination of their variation between biological states on a
genomic scale. Two popular platforms are transcriptomics that measure
messenger RNA transcript levels, and proteomics that quantify protein
abundance. Transcriptomic profiling of potatoes under cold stress has
been studied in both plants and tubers (Bagnaresi et al., 2008; Oufir
et al., 2008). Previously, proteomic analysis has been used to in-
vestigate the cold responses in plants such as rice (Cen et al., 2018),
Arabidopsis thaliana (Amme, Matros, Schlesier, & Mock, 2006), and
grapevines (Yang et al., 2017). The combination of transcriptome and
proteome is useful to understand the regulation mechanisms in stress
responses. For now, transcriptomic combined proteomic analysis was
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conducted on potato plants under cold and salt stresses (Evers et al.,
2012), but no such research has been conducted on potato tubers,
particularly during postharvest storage.

In the present research, the potato tubers (Solanum tuberosum L.)
were stored at 15 °C, 4 °C and 0 °C for 20 days and used for tran-
scriptomic combined proteomic analysis. The objective was to in-
vestigate the mechanism of sugar accumulation and defense response
towards cold stress in potato tubers during postharvest storage.

2. Materials and methods

2.1. Plant material and treatments

‘Atlantic’ potato tubers with uniform size were harvested from a farm
in Zhangjiakou, Beijing, China. After curing for seven days, the potato
tubers were stored at 15 °C, 4 °C and 0 °C with 85–95% relative humidity
and sampled at 0 d, 3 d, 10 d, 20 d and 30 d after storage. Each sample
consisted of twelve potatoes, which were divided into three replicates.
The peeled flesh of potatoes was stored at −80 °C until analysis.

2.2. Measurements of sugars

The measurements of sugars were carried out using a method de-
scribed previously (Lin et al., 2017). Dry potato tuber powder (200mg)
was mixed with 4mL of ethanol (80%) and extracted for 30min with
ultrasonic. After centrifuging at 10,000 rpm for 10min, the upper phase
was dried and dissolved in ddH2O. The samples were filtered and in-
jected into an ion chromatograph (ICS-3000, Dionex, USA) equipped
with a Carbo PacTMPA20 column (3mm×150mm). The column
temperature was kept at 35 °C, and the flow rate maintained at
0.5 mLmin−1. Equal gradient of 92.5% A (ddH2O) and 7.5% B
(0.25mol L−1 NaOH) were used for elution. The contents of individual
sugars were analyzed using standard curves.

2.3. RNA-Seq analysis

The work was conducted by Majorbio Co., Ltd (Beijing, China) on an
Illumina HiSeq™ platform. Total RNA from potato tubers stored at
15 °C, 4 °C and 0 °C for 20 d was used for cDNA library construction. The
clean reads were mapped to potato genome (http://solanaceae.
plantbiology.msu.edu/cgi-bin/gbrowse/potato/). The read numbers
were transformed to FPKM (Fragments Per Kilobase of transcript se-
quence per Millions base pairs sequenced) value for gene expression
quantification. The differentially expressed genes (DEGs) was analyzed
using edgeR (http://www.bioconductor.org/packages/2.12/bioc/
html/edgeR.html) with following criteria: False discovery rate
(FDR) < 0.05 & |log2FC| > =1. Three biological replicates were used
in each sample.

2.4. First strand cDNA synthesis and real-time quantitative PCR (Q-PCR)

The Q-PCR was carried out by previously described method with
modifications (Lin et al., 2017). First strand cDNA was synthesized
using iScriptTM cDNA Synthesis Kit (Bio-Rad). Q-PCR was performed
on an ABI 7500 instrument (Applied Biosystems, Thermo Fisher Sci-
entific, Waltham, MA, USA). The reaction system of Q-PCR was as
follows: 1 μL template, 0.4 μL forward primer (10 μM), 0.4 μL reverse
primer (10 μM), 10 μL 2×TransStart® Top Green qPCR SuperMix
(+Dye II) (TransGen Biotech, Beijing, China), and 8.2 μL ddH2O. The
relative expression of genes was normalized with the reference gene
EF1a. The program was initiated at 95°Cfor 10min, at 95 °C for 15 s and
at 60 °C for 1min, after which, there were 40 cycles of 95 °C for 15 s and
60 °C for 1min, followed by a melting curve procedure. The primers
used in this research were shown in Supplementary Table 1. Three
biological replicates consisting of fifteen tubers were used for gene
expression analysis in each sample.

2.5. iTRAQ based proteomic analysis

The total protein content from potato tubers stored at 15 °C, 4 °C and
0 °C for 20 d was analyzed using Bradford protein assay kit. Tryptic
digests of 15 °C stored potatoes were labeled with 116, 117 and 118
iTRAQ8 reagents while 4 °C stored potatoes with 117, 118 and 119
iTRAQ8 reagents, and 0 °C stored potatoes with 118, 119 and 120
iTRAQ8 reagents. The peptides were desalted and used for LC-MS/MS
analysis. MS/MS spectra were searched with Protein Discoverer™
Software 2.1 against UniProt database. The best match for the peptide
mass was used to determine the parent proteins. The searching para-
meters were up to two missed cleavages of tryptic digestion, carbamido
methylation of cysteines and the iTRAQ of N terminus and lysine side
chains of peptides as fixed modification, and methionine oxidation and
protein N-terminal acetylation as variable modifications. Peptide
spectral matches were confirmed based on the q-values at 1% FDR. The
work was conducted by Majorbio Co., Ltd (Beijing, China).

2.6. Statistical analysis

Figures in this research were drawn by Origin 8.6 software and
Multi Experiment Viewer software (MeV v4.8.1). Least significant dif-
ferences (LSD) were calculated at 0.05 level by SPSS Statistics 22
Software.

3. Results

3.1. Effects of different temperatures on sugar accumulation in potato tuber
during postharvest storage

Four soluble sugars, including sucrose, glucose, fructose, and ga-
lactose, were measured in the present research, and sucrose was con-
sidered as the predominant soluble sugar in potato tuber (Fig. 1). All
the three sugar contents decreased during the whole storage period in
potatoes under 15 °C storage, while sugar content increased in potatoes
under 4 °C and 0 °C during the whole storage period. Compared to the
potatoes stored at 4 °C, the contents of sucrose increased significantly in
potatoes stored at 0 °C from 20 d of storage. No significant difference
was observed in all the sugar contents in potatoes at 3 d of storage
under different temperatures. To better investigate the mechanism of
sugar metabolism under cold stress, the potatoes stored at 15 °C, 4 °C
and 0 °C for 20 d were used for further research.

3.2. Analysis of differently expressed genes and proteins in potato tubers
under different temperature storage

Potato tubers stored at 15 °C, 4 °C and 0 °C for 20 d were used for
RNA-Seq and iTRAQ based proteomic analysis. For the RNA-Seq ana-
lysis, more than six clean gigabases with a GC percentage above
44.67%, a Q20 percentage above 97.27% and a Q30 percentage above
93.43% were obtained after removing adapters, low-quality regions,
and possible contamination. The proportion of total reads in the potato
transcriptome libraries that mapped to the potato reference genome
ranged from 79.41% to 88.75% (Table 1). The gene expressions were
validated by Q-PCR with a correlation coefficient above 0.92
(Supplementary Fig. 1).

The gene and protein expressions among different samples were
compared as shown in Figs. 2 and 3,055 DEGs, including 1685 up-
regulated and 1370 down-regulated DEGs, were found in the cluster of
4 °C vs. 15 °C, where 51 differently expressed proteins (DEPs) were
found, including 41 up-regulated and 10 down-regulated DEPs. In the
cluster of 0 °C vs. 15 °C, 7546 DEGs were investigated, including 4293
up-regulated and 3253 down-regulated genes, while 146, including 140
up-regulated and 36 down-regulated, DEPs were found. In the cluster of
0 °C vs. 4 °C, 7432 DEGs were investigated, including 3566 up-regulated
and 3866 down-regulated genes, while 64, including 44 up-regulated
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and 20 down-regulated, DEPs were found.
Fig. 3 shows that 10,671 DEGs and 167 DEPs were overlapped

among clusters of 4 °C vs. 15 °C, 0 °C vs. 15 °C and 0 °C vs. 4 °C (Fig. 3A).
When combining the DEGs and DEPs, 122 factors were significantly
expressed in both RNA and protein levels, while 10,549 genes and 45
proteins were not overlapped in the analysis. Thus, the 122 factors that
expressed in both RNA and protein levels were exhibited in heatmap,
and classified into five sub-clusters according to their expressions
(Fig. 3B; Supplementary Table 2). Seven factors were identified in
cluster 1, which showed up-regulation in the RNA level and down-
regulation in the protein level as storage temperature decreasing.
Thirteen factors were identified in cluster 3, which showed opposite
expression from cluster 1. The factors in cluster 2, cluster 4 and cluster
5 showed consistent expressions in the RNA and protein levels, with
down-regulation in cluster 2 and up-regulation in cluster 4 and cluster 5
as storage temperature decreasing.

3.3. Sugar metabolism in response to cold temperature in potato tubers
during storage

The enzymes involved in starch and sugar metabolism in potato
tubers were investigated in the research (Table 2). Nine enzymes were
significantly expressed in both RNA and protein levels, including
granule-bound starch synthase 1 (PGSC0003DMG400012111), beta-
amylase (PGSC0003DMG400001549), invertase inhibitor (PGSC0
003DMG400004616), sucrose synthase 2 (PGSC0003DMG400013546),
UDP-glucose: glucosyltransferase (PGSC0003DMG400019882), pyr-
uvate kinase (PGSC0003DMG400006590), pyruvate decarboxylase
(PGSC0003DMG400022953), beta-glucan-binding protein 4 (PGSC
003DMG400044116) and fructokinase (PGSC0003DMG400024246).

The expression of granule-bound starch synthase 1 (PGSC0003
DMG400012111) decreased while the expression of beta-amylase
(PGSC0003DMG400001549) increased in both RNA and protein levels
as the storage temperature decreased, which indicated that the starch
degradation pathway was promoted by low temperatures during sto-
rage. Compared to 15 °C and 4 °C stored potatoes, sucrose synthase 2
(PGSC0003DMG400013546) showed up-regulation in both the RNA
and protein level at 0 °C storage, but no significant difference was ob-
served between 15 °C and 4 °C stored potatoes. The expression of in-
vertase inhibitor (PGSC0003DMG400004616) was down-regulated by
low temperatures in both RNA and protein level, indicating the con-
version of sucrose to glucose and fructose under low temperatures. The
expression of fructokinase (PGSC0003DMG400024246) was up-regu-
lated by low temperatures in both RNA and protein level, indicating the
phosphorylation of fructose in potato tubers under low temperature.
Other enzymes showed opposite or irregular expression in RNA and
protein level, and will not considered for further analysis in this re-
search.

3.4. Heat shock proteins in response to cold stress in potato tuber during
postharvest storage

The Hsps in response to low temperatures in potatoes were in-
vestigated and are shown in Table 3. It can be seen that 21 members of
Hsps were significantly expressed in potato under low temperatures. Six
members showed opposite or inconsistent expression in the RNA and
protein levels, including a small Hsp (PGSC0003DMG400003219), four
members of Hsp70 (PGSC0003DMG400019208, PGSC0003DMG
400008917, GSC0003DMG400000398, PGSC0003DMG400030405)
and a Hsp90 (PGSC0003DMG400029787). The other fifteen members,

Fig. 1. Effects of different temperature on sugar
contents variation in potato during postharvest
storage. Sucrose (A), glucose (B), fructose (C), and
galactose (D) were detected in the analysis. Error
bars represent standard errors calculated from
three independent biological replicates. LSDs re-
present least significant differences at the 0.05
level.

Table 1
Quality assessment of RNA-Seq data.

Groups Samples Total reads Error (%) Q20 (%) Q30 (%) GC (%) Total mapped

I 15°C_A 61,722,788 0.0128 98.03 94.45 46.58 79.41%
15°C_B 74,819,558 0.0127 98.07 94.52 48.67 80.59%
15°C_C 70,984,330 0.0136 97.75 93.68 45.4 82.81%

II 4°C_A 70,329,580 0.0135 97.81 93.81 44.67 87.29%
4°C_B 67,378,820 0.0134 97.86 93.94 44.93 87.51%
4°C_C 73,534,476 0.0134 97.84 93.88 45.44 88.33%

III 0°C_A 73,691,570 0.0135 97.81 93.82 45.27 88.75%
0°C_B 79,322,524 0.0137 97.67 93.43 45.29 88.03%
0 °C_C 80,643,766 0.0135 97.74 93.61 44.9 88.72%
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including three members of Hsp70 family (PGSC0003DMG400000444,
PGSC0003DMG400010677, PGSC0003DMG400027750), two members
of Hsp80 family (PGSC0003DMG400009509, PGSC0003DMG40
1028907), one member of Hsp90 family (PGSC0003DMG402028907),
one members of Hsp100 family (PGSC0003DMG400024644) and eight
members of small Hsp family (PGSC0003DMG400028624,
PGSC0003DMG400009255, GSC0003DMG400004808, PGSC0003DMG
400011631, GSC0003DMG400030339, PGSC0003DMG400030426,
PGSC0003DMG400030341, PGSC0003DMG400039484), were con-
sistently up-regulated by low temperatures in both RNA and protein
levels.

4. Discussion

Plant species differ greatly in their ability to acclimate and survive
from cold stress. Sugars will accumulate in leaves, bark, fruits and tu-
bers when suffer from cold during development or postharvest storage
(Antikainen & Pihakaski, 1994; Jia et al., 2019; Lin et al., 2017; Sauter
& Kloth, 1987; Zhang et al., 2018). Soluble sugars are working as os-
moprotectants and nutrients, and can interact with the lipid bilayer to
protect plant cells from cold stress (Tarkowski & Ende, 2015). In ad-
dition, sugars are reported to be primary messengers in signal trans-
duction pathways (Hc & Van, 2017). Increased sugar contents can
promote leaf senescence, indicating that the accumulation of soluble
sugars might impact negatively on plants during cold stress (Wingler,
Purdy, Maclean, & Pourtau, 2006). From our research, the contents of
soluble sugars such as sucrose, glucose and fructose increased sig-
nificantly under low temperatures in potato tuber during storage. The
lower the temperature, the higher contents of soluble sugars detected,
indicating that the soluble sugars were highly correlated with cold
stress in potato tubers during postharvest storage.

Starch is converted to sugars during cold-induced sweetening in
potato tubers (Hou et al., 2017). The enzymes of granule-bound starch
synthase 1, beta-amylase, sucrose synthase 2, invertase inhibitor, and
fructokinase play crucial roles in this process. Starch is degraded mainly
through the phosphorolytic pathway, catalyzed by the phosphorylase
and amylolytic enzymes in potato tuber, and compared with the rates of
respiration, sugar metabolism, and the energetic requirements of dif-
ferent pathways (Isherwood, 1973). From our results, the granule-
bound starch synthase 1 was down-regulated while beta-amylase was
up-regulated, indicating the starch degradation was promoted by low

temperatures. Reports have shown that vacuolar invertase can catalyze
sucrose into fructose and glucose, resulting in reducing sugars accu-
mulation, which could be regulated negatively by invertase inhibitor
(Lin et al., 2015). From our results, invertase inhibitor was significantly
down-regulated in low temperatures, suggesting the importance of in-
vertase inhibitor in regulating reducing sugar accumulation of potato in
response to cold stress. The transfer of a phosphate group from ATP to
fructose is the initial step in its utilization and specifically catalyzed by
fructokinase. The up-regulation of fructokinase under low temperatures
indicated rapid utilization of fructose in potato tubers under cold stress.

Stress tolerance is acquired from various stresses to prevent cellular
damage and re-build cellular homeostasis in plant. From our results,
fifteen Hsps, including Hsp70, Hsp80, Hsp90, Hsp100 and small Hsp
family, were significantly induced by low temperature in potato tubers
during postharvest storage. Heat shock proteins are important defense
induced factors, which have been reported to be in responsive to var-
ious stresses (Chen, Feder, & Kang, 2018). The expression of Hsp70
genes is consistent with the degree of thermotolerance, and it also plays
important roles in water, salt, and heat stress in plants (Usman et al.,
2017). The Hsp90 family is reported to respond to cold, heat, heavy
metals, salt stress in Arabidopsis (Krishna & Gloor, 2001; Milioni &
Hatzopoulos, 1997). Hsp100 family is induced by many environmental
factors, including cold, dehydration, heat, and dark-induced etiolation
(Keeler et al., 2000; Queitsch, Hong, Vierling, & Lindquist, 2000). The
abundance of small Hsps in plants and their characteristics indicate that
they play vital roles in stress tolerance in plants (Sun, Van, &
Verbruggen, 2002).

Individual members from different Hsp family have special func-
tions, but the co-operation among them is more important. The various
Hsps play complementary or overlapped roles in protecting proteins
under stress. Research has reported that small Hsps prevent non-native
proteins aggregation by binding to them, thus providing substrates for
followed refolding by Hsp70 orHsp100 family (Axel et al., 2003; Axel,
Elke, Sonja, Elizabeth, & Bernd, 2010; Veinger, Diamant, Buchner, &
Goloubinoff, 1998). Others also proposed that Hsp100s can efficiently
resolubilize the protein aggregates, which are then refolded by the
Hsp70s; the solubilized proteins might be refolded to form proteins
with the assistance of Hsp60s (Ben-Zvi & Goloubinoff, 2001). Similar
observations also have been reported in plants (Axel et al., 2003; Lee &
Vierling, 2000).

In conclusion, the harvest potato tubers were usually stored at low

Fig. 2. Differently expressed genes and proteins in potato under different temperature storage. Group I: Potatoes stored at 15 °C for 20 days; Group II: Potatoes stored
at 4 °C for 20 days; Group III: Potatoes stored at 0 °C for 20 days.
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temperature to inhibit sprouting and decay, which caused a series of
physiological and biochemical responses. The soluble sugars such as
sucrose, glucose and fructose were significantly increased under low
temperature storage through the function of granule-bound starch
synthase 1, beta-amylase, invertase inhibitor and fructokinase. Fifteen

members of heat shock proteins were induced by low temperatures,
which may act individually or synergistically to prevent cellular da-
mage and to re-build cellular homeostasis in potato tubers under cold
stress.

Fig. 3. K-means clustering of differently expressed genes and proteins from potato tubers under different temperature storage. Group I: Potatoes stored at 15 °C for
20 days; Group II: Potatoes stored at 4 °C for 20 days; Group III: Potatoes stored at 0 °C for 20 days.
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17.6 kDa class I heat shock protein PGSC0003DMG400030341 36.11 744.48 2516.14 0.8 1.16 1.18

Small Hsp Small heat-shock protein PGSC0003DMG400028624 4.13 87.22 310.88 0.87 1.10 1.15
Small heat-shock protein homolog protein PGSC0003DMG400009255 2.93 41.71 1914.64 0.78 0.97 1.25
Mitochondrial small heat shock protein PGSC0003DMG400004808 43.80 204.03 1314.81 0.59 0.81 1.31
Chloroplast small heat shock protein class I PGSC0003DMG400011631 0.53 5.53 51.78 0.73 0.99 1.24
Low molecular weight heat-shock protein PGSC0003DMG400039484 1136.29 10516.67 11353.57 0.96 1.22 1.23
Small heat shock protein, chloroplastic PGSC0003DMG400003219 0.24 0.06 0.44 0.80 1.19 1.39

Hsp70 Heat shock cognate 70 kDa protein PGSC0003DMG400000444 25.67 60.19 113.06 0.86 1.07 1.13
Heat shock 70 kDa protein, mitochondrial PGSC0003DMG400010677 84.19 133.82 840.31 0.84 0.93 1.06
Hsc70 PGSC0003DMG400027750 125.46 271.35 1017.29 0.87 1.08 1.21
Heat shock cognate 70 kDa protein 2 PGSC0003DMG400019208 4846.00 1423.2 794.44 0.82 0.98 1.44
Heat shock protein 70 PGSC0003DMG400008917 13432.77 5877.31 3821.86 0.80 0.98 1.56
Heat shock protein 70–3 PGSC0003DMG400000398 472.74 168.73 560.71 0.83 0.99 1.29
Heat shock cognate 70 kDa protein 1 PGSC0003DMG400030405 82.16 70.79 636.87 0.78 0.96 1.64

Hsp80 Heat shock protein 83 PGSC0003DMG400009509 49.58 128.72 1545.46 0.68 0.91 1.62
Heat shock protein 83 PGSC0003DMG401028907 2.10 32.57 423.33 0.55 0.76 1.66

Hsp90 Heat shock protein 90 PGSC0003DMG402028907 3.05 31.50 270.32 0.54 0.78 1.32
Molecular chaperone Hsp90-1 PGSC0003DMG400029787 180.88 132.29 591.29 0.95 0.96 1.19

Hsp100 101 kDa heat shock protein PGSC0003DMG400024644 56.05 402.78 915.90 0.80 1.01 1.26
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